## § 25.231

- (1) The more critical of the takeoff ice and final takeoff ice accretions defined in appendix C for each configuration used in the takeoff phase of flight;
- (2) The en route ice accretion defined in appendix C for the en route configuration;
- (3) The holding ice accretion defined in appendix C for the holding configuration(s);
- (4) The approach ice accretion defined in appendix C for the approach configuration(s); and
- (5) The landing ice accretion defined in appendix C for the landing and go-

around configuration(s).

- (f) The stall warning margin must be sufficient in both non-icing and icing conditions to allow the pilot to prevent stalling when the pilot starts a recovery maneuver not less than one second after the onset of stall warning in slowdown turns with at least 1.5 g load factor normal to the flight path and airspeed deceleration rates of at least 2 knots per second. When demonstrating compliance with this paragraph for icing conditions, the pilot must perform the recovery maneuver in the same way as for the airplane in nonicing conditions. Compliance with this requirement must be demonstrated in flight with-
- (1) The flaps and landing gear in any normal position;
- (2) The airplane trimmed for straight flight at a speed of 1.3  $V_{SR}$ ; and
- (3) The power or thrust necessary to maintain level flight at 1.3  $V_{\rm SR}$ .
- (g) Stall warning must also be provided in each abnormal configuration of the high lift devices that is likely to be used in flight following system failures (including all configurations covered by Airplane Flight Manual procedures).
- (h) For flight in icing conditions before the ice protection system has been activated and is performing its intended function, the following requirements apply, with the ice accretion defined in appendix C, part II(e):
- (1) If activating the ice protection system depends on the pilot seeing a specified ice accretion on a reference surface (not just the first indication of icing), the requirements of this section apply, except for paragraphs (c) and (d) of this section.

- (2) For other means of activating the ice protection system, the stall warning margin in straight and turning flight must be sufficient to allow the pilot to prevent stalling without encountering any adverse flight characteristics when the speed is reduced at rates not exceeding one knot per second and the pilot performs the recovery maneuver in the same way as for flight in non-icing conditions.
- (i) If stall warning is provided by the same means as for flight in non-icing conditions, the pilot may not start the recovery maneuver earlier than one second after the onset of stall warning.
- (ii) If stall warning is provided by a different means than for flight in nonicing conditions, the pilot may not start the recovery maneuver earlier than 3 seconds after the onset of stall warning. Also, compliance must be shown with §25.203 using the demonstration prescribed by §25.201, except that the deceleration rates of §25.201(c)(2) need not be demonstrated.

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-7, 30 FR 13118, Oct. 15, 1965; Amdt. 25-42, 43 FR 2322, Jan. 16, 1978; Amdt. 25-108, 67 FR 70827, Nov. 26, 2002; Amdt. 25-121, 72 FR 44668, Aug. 8, 2007]

## GROUND AND WATER HANDLING CHARACTERISTICS

## § 25.231 Longitudinal stability and control.

- (a) Landplanes may have no uncontrollable tendency to nose over in any reasonably expected operating condition or when rebound occurs during landing or takeoff. In addition—
- Wheel brakes must operate smoothly and may not cause any undue tendency to nose over; and
- (2) If a tail-wheel landing gear is used, it must be possible, during the takeoff ground run on concrete, to maintain any attitude up to thrust line level, at 75 percent of  $V_{SR1}$ .
- (b) For seaplanes and amphibians, the most adverse water conditions safe for takeoff, taxiing, and landing, must be established.

[Docket No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–108, 67 FR 70828, Nov. 26, 2002]